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Previous calculations of a {-~matrix approximation to Hubbard’s model of a half-filled
narrow energy band are extended to cover all possible occupancies. The method is exact
in the low-density limit. The paramagnetic state is found to be more stable than in the Kan-
amori approximation. The nearly half-filled band, infinite-repulsion limit is also consistent
with Nagaoka’s prediction. The resulting phase transitions between paramagnetic, ferromag-
netic, and antiferromagnetic states occur at smaller bandwidth/potential-energy ratios than

those of Penn’s Hartree-Fock approach.

1. INTRODUCTION

The authors have previously investigated the
ground state of a half-filled nondegenerate narrow
energy band using second-order perturbation theo-
ry.! This was compared to a ¢-matrix approxima-
tion. The electronic Hamiltcnian used was that of
Hubbard, % and the calculations were performed as-
suming a simple-cubic lattice in the tight-binding
limit.

In the weak-interaction limit, an expansion in the
bare interaction or the reaction matrix is conver-
gent. Such expansions are, however, generally
known to be unreliable for a paramagnetic state at
larger carrier densities and for a strong electronic
interaction. These considerations are fully ex-
panded on in our earlier paper.! But it turns out
that, for the half-filled band in the Hubbard model,
the paramagnetic state becomes unstable in favor
of an antiferromagnetic state before the strength of

the interaction can invalidate either approxima-
tions. Most of the correlation is already included
in this long-range-ordered state since opposite-spin
electrons effectively stay out of each other’s way.
Although it was found that a #-matrix approximation
is uncalled for in the half-filled-band case, it is
necessary in the low-carrier-density limit. As
shown by Day?® the ¢{-matrix approximation is the
first term in a power-series expansion in the den-
sity and thus exact at low electron or hole occupan-
cies. It then appears worthwhile at this stage to
extend the /-matrix calculations to cover all band
densities. The resulting paramagnetic, ferromag-
netic, and antiferromagnetic phase study will be
accurate at low density or larger bandwidths. The
only questionable results would be those for large
occupancies and large repulsion.

All calculations will again be performed for a
simple-cubic structure in the tight-binding limit at
absolute zero of temperature. The interatomic dis-
tance is normalized to 1.
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II. t+-MATRIX

The basic Hamiltonian is Hubbard’s!

nn
H==T2 1 C}, Cju+I L N Ny .
ij ¢ i

(2.1)

The unperturbed single-particle wave functions
on which to build the {-matrix approximation are
those of the following Hamiltonian:

an
Hy=-T21 2 ClCotI 22 ANy (2.2)
ii o i o

For the paramagnetic and ferromagnetic states we
choose

An=0,=0, (2.3)
while for the antiferromagnetic state

A, =tinet i (2.4)
where

F=rX+¥+2). (2.5)

The unperturbed wave functions and their energies

are
®7,(R)=N1/2 o R (2.6)

E;=€z= - 2T(cosk, + cosk, + cosk,) 2.7

for the paramagnetic and ferromagnetic states, and
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(2.11)
(2.12)

B, = ($)V/2S;[1 + 2Sz€z/ (A% + 4e V212
Sg= - €&/ | €|
for the antiferromagnetic state.

Following Appendix B of our earlier paper, ! the
energy in the {-matrix approximation is

an
E;=-T2 22 2o (R 3]
! o E<fp, 1 ol i)qji"(R’)

+1_2 DY

Ui RiR,)®;
£y <Ep, Ea<Bp_ i 1kt T

kl«p

(RJ) %%, (R,),
(2.13)

where the pair wave function defined in Day?® is

% g, (RiRo) = 9 (R);, (Ry)

kx4
kp K,

* - - - -
X?@g i‘( R,)d’;:é-( Ri)‘pfliz( R{R{)/

By + Ei, - E; - Eiz). (2.14)

The formal solution of Eq. (2.13) is easy once the
unperturbed single-particle wave functions are sub-
stituted. In each of the paramagnetic, ferromag-
netic, and antiferromagnetic states one has to
choose spin-dependent Fermi surfaces, as charac-
terized by the Fermi momenta K;,, consistent with
the electronic occupancy and the spin polarization

.8 Lo

®z.( R)=N-1/2 o R (4.2 Be ¥ F) (2.8) of the band. For the ferromagnetic state the degree
, . ni/2 of magnetization was used as a variational param-
Eg=-35; (8%+4¢5)Y2, (2.9) eter withwhich to minimize the energy. In the anti-
with ferromagnetic solution, it is the parameter A which
Ap=()V2[1- 2SE€E/(A2+4€;2)”2]1/2y (2.10) was used variationally. The stability of these vari-
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TABLE I. Ratio of the energy correction from the
Kanamori approximation to that of the £ matrix for the
paramagnetic state at infinite repulsion. 7 is the elec-
tronic occupancy per site and Er is the Fermi energy.

n Ep/NT AEKanzmri/AEtmztrix
0 —6.0 1.00
0.1 —-4.2 1.01
0.2 -3.35 1.10
0.3 -2.6 1.28
0.4 -2.1 1.32
0.5 -1.75 1.37
0.6 -1.4 1.36
0.7 - 1.05 1.32
0.8 -0.7 1.26
0.9 -0.35 1.18
1. 0 1.06

ous phases is decided on a minimal-energy basis.

III. RESULTS

The phase diagram of the paramagnetic, ferro-
magnetic, and antiferromagnetic states resulting
from the #-matrix analysis is shown in Fig. 1. We
have used the dimensionless parameter

C=4T/1 (3.1)

as a measure of bandwidth. Because of the close
similarity with the results of Penn, * we have also
plotted them on the same figure. Note, however,
the inverted appearance of the diagram of Penn,
who used the variable 2/c on his vertical axis. The
effect of short-range correlations on the Hartree-
Fock approximation of Penn is to push the phase
transitions to considerably smaller bandwidths.

The reason is that correlation effects are more in-
tense on a Hartree-Fock paramagnetic state than
on a spin-polarized state which already has some
correlations built in. The numerical inaccuracy in
the calculations translates into a 10% uncertainty in
the bandwidth at the phase boundaries.

It would surely be of interest to compare these
results with those obtained from Kanamori’s® ap-
proximation to the f matrix. He replaced the pair
wave-function correction in Eq. (2.14) by an ap-
proximate average which he chose to be the value
at zero pair momentum,

Ui, (RiRy)= 97, (R)%;, (Ry)

—I Z} ., - . -
B >ip, ig)iﬁ._@"lo (R)%z; (Ry)
x? a7, ( ﬁi)fb’,{é_(Ri)zpoo(R,R,)/(E;i +Eg, - 2By).

(3.2)

He reasoned this approximation would be excellent
at small electron occupancy since must of the pas-
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ticles have nearly zero momentum anyway. He also
estimated the error would be small for a constant
density of state. In Table I we calculated the ratio
of the energy correction from the Kanamori approx-
imation to that of the { matrix for the paramagnetic
state in the infinite-repulsion limit. The excellence
of the Kanamori approximation is verified at low
electron density. But there is a rather large dis-
crepancy at intermediate densities with a comeback
at the half-filled-band limit. It would appear the
Kanamori approximation overemphasizes the energy
correction whenever the Fermi level falls in a non-
linear region of the density of states. This can be
deduced from the position of the Fermi level rela-
tive to the density of states which is plotted in Fig.
2. This would explain why Kanamori found a small
error for a constant density of states. In Table II
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FIG. 2. Density of states as a function of the energy

per site in units of temperature for the simple-cubic
lattice in the tight-binding limit (solid line), the parabolic

distribution (dashed line), and the triangular distribution
(dot-dashed line).
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TABLE II. Comparison of critical values for the
ferro-paramagnetic phase transition with those using
the Kanamori approximation. # is the electronic occu-
pancy per site and 3C is the bandwidth/potential-energy
ratio.

Approximation nee(c =0) nerlc =%) Cerln=1)
t matrix
Simple-cubic lattice,
tight-binding limit  0.35 0.54 0.33
Kanamori
Simple-cubic lattice,
tight-binding limit 0.24 0.42 0.37
Parabolic density
of states 0.208 0.367 0.375
Trianguiar density
of states 0.214 0.395 0.538

we compare the f-matrix results for the ferromag-
net-paramagnet transition to those obtained by the
Kanamori approximation. We have included Kan-
amori’s own results for parabolic and triangular
densities of states which are also plotted in Fig. 2.
One notices the rather large difference between the
t-matrix and the Kanamori approximations again at
intermediate densities. The half-filled-band case
is very close to the Kanamori estimate even using
a parabolic density of states. The effect of a full
t-matrix approximation is then to further stabilize
the paramagnetic state at the expense of ferromag-
netism, the more so at intermediate densities.

The consistency between the Kanamori estimates
using various densities of states assures us of the
accuracy of our computations.

It is also reassuring to note that Nagaoka’s6 con-
clusion is verified. For infinite repulsion, the ad-
dition or removal of a few electrons from the half-
filled band results in a transition to the ferromag-
netic state. The {-matrix approximation, however,
will be shown to be invalid for the ferromagnetic
state near the half-filled-band limit. Any conclu-
sions are then purely academic.

One significant difference with Penn’s results
other than at the small-density limit is at an aver-
age site occupancy of 1. This was the outcome of
our earlier paper. We find a transition from the
antiferromagnetic state to a paramagnetic state
contrary to the Hartree expectations for nearest-
neighbor hopping only.

We have not indulged in anydiscussion of the order
of the phase transitions because our numerical in-
accuracy makes such a determination inconclusive.

IV. VALIDITY OF -MATRIX APPROXIMATION

In order to assess the credibility of the {-matrix
results one must examine the validity of the approx-
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imation. The {-matrix approximation is justified
whenever (i) an expansion in the reaction matrix is
convergent, or (ii) an expansion in the number of
hole lines is convergent.

In both cases the ¢ matrix is the first term in the
expansion. An example of the first type of conver-
gence is for small interactions, while the small-
density limit represents the second type. In our
preceding paper! we had examined the convergence
of the reaction-matrix expansion in the half-filled-
band case and found it good for

C20.4. (4.1)

On the other hand, Day® deduced that an expansion
in the number of hole lines is sensitive to the parti-
cle density. In fact, the convergence parameter ¢
as defined in our earlier paper is proportional to
the electronic occupancy per site n,. One would ex-
pect convergence of such a series for

7,%0.3, (4. 2a)
i.e.,
< {0. 6 for a paramagnetic state (4. 2p)
n s
0.3 for a ferromagnetic state . (4. 2¢)

From both these convergence criteria, one deduces
that a {-matrix approximation is unjustifiable in the
highly correlated high-density region. This occurs
in the ferromagnetic phase and the small-bandwidth
part of the antiferromagnetic phase. The only ex-
ception is in the half-filled antiferromagnetic phase
when the Fermi level falls in the antiferromagnetic
energy gap. We deduced in Ref. 1 that a bare-in-
teraction expansion, and more so a reaction-matrix
expansion, would then be convergent for all band-
widths.

That a £ matrix is unjustifiable in the ferromag-
netic and part of the antiferromagnetic phases does
not mean these are not the true phases of the model
Hamiltonian. It simply means one cannot use argu-
ments based on the {-matrix analysis to deduce the
nature of the phases. It also implies that the posi-
tion of their boundaries is somewhat uncertain.

As mentioned in our earlier paper, ! Kohn and
Luttinger” found an additional contribution to the
Goldstone expansion for nonspherical Fermi sur-
faces. We will show that this additional contribution
is negligible within the region of validity of a #-ma-
trix approximation, i.e., at low carrier density or
for larger bandwidths.

At low electron or hole density, the #-matrix
term is the first-order correction in a density ex-
pansion. Kohn and Luttinger have shown that there
is no correction to first order in the perturbation.
This is true whether the perturbation is the interac-
tion potential strength or the density.

At larger bandwidths, the f-matrix approximation
is almost equivalent to a second-order one (see
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Ref. 1). To second order in the interaction, the
energy correction to the Goldstone series depends
on the second-order anomalous correction and the
derivative with respect to the chemical potential of
the first-order correction to the thermodynamic po-
tential.” If, as was shown in Appendix D of Ref. 1,
we choose the zero-order Hamiltonian to be the
Hartree one, we find a vanishing derivative of the
first-order correction to the thermodynamic poten-
tial and no anomalous diagrams. This is a conse-
quence of the Hubbard model which does not contain
any interaction between like-spin particles. There
is then no second-order correction to the Goldstone
series for the energy. But the Goldstone series is
independent of any one-body potential that may be
added to the unperturbed Hamiltonian and subtracted
from the interaction part as long as the Fermi sur-
face remains the same. As this is the case for the
paramagnetic and antiferromagnetic states, the
previous conclusions also hold when using the un-
perturbed Hamiltonian in zero order on these
states. This is not so for the ferromagnetic state,
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but since the {-matrix approximation has been found
unreliable for the ferromagnetic state, it all be-
comes academic.

V. CONCLUSION

The f-matrix approximation further stabilizes the
paramagnetic state. Except for crucial behavior
at low density and in the half-filled-band case it
leads qualitatively to the same conclusions as a
Hartree-Fock approach, and suffers from the same
inaptness in the densely populated limit of the fer-
romagnetic phase. One would have to call on a
more powerful approximation to deal with this
phase. Roth’s® extension of the two-pole theory is
surely more appropriate for a saturated or nearly
saturated ferromagnet.

ACKNOWLEDGMENTS
The authors wish to thank Ed Siegel for his assis-

tance. The calculations were performed at the
University of Sherbrooke Computation Center.

*Supported by the Canadian National Research Council.

1. G. Caron and G. Kemeny, Phys. Rev. B 3, 3007
(1971).

%J. Hubbard, Proc. Roy. Soc. (London) A226, 238
(1961); A281, 401 (1964).

3B, D. Day, Rev. Mod. Phys. 39, 719 (1967).

‘D. R. Penn, Phys. Rev. 142, 350 (1966).

5J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30,
275 (1963).

%Y. Nagaoka, Phys. Rev. 147, 392 (1966).

'"W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41
(1960).

8L. Roth, Phys. Rev. 186, 428 (1969).



